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Introduction

The goal of this thesis is to prove the GAGA theorem which first appeared
in Serre’s paper Géométrie algébrique et géométrie analytique in 1956. In
broad strokes, GAGA says that on a projective variety there is no difference
between coherent analytic and algebraic sheaves. On those varieties it is thus
possible to use analytic methods to solve algebraic problems, and vice versa.
In particular, when the underlying variety is nonsingular the full arsenal of
Hodge theory on Kähler manifolds can be brought to bear in the resolution
of algebraic questions.

There is no denying that while it is certainly nice to know that coherent
algebraic and analytic sheaves are virtually identical on projective varieties,
then this doesn’t do us much good unless we know what those words mean.
For the benefit of the reader we thus include a quick review of the funda-
mentals of sheaf theory and algebraic and analytic geometry needed for the
statement and proof of GAGA in chapters 1 and 2. Beware that our review
is a long way from being self contained and makes heavy use of references to
various sources found in the bibliography.

Chapters 3 and 4 form the heart of this thesis and are fairly detailed and
explicit. The former is a small detour devoted to the proof of a theorem of
Cartan and Serre, necessary for the proof of GAGA, while the latter contains
the statement and proof of GAGA itself. Finally we have collected some
algebraic facts used in this thesis in an appendix.

It should be noted that we state and prove GAGA in the context of al-
gebraic varieties and complex spaces. Shortly after the publication of Serre’s
paper Grothendieck extended Serre’s result to the category of schemes. While
proving GAGA for this more general case would be quite nice, time con-
straints force us to settle for varieties and spaces.
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Chapter 1

Sheaves

The major virtue of sheaf theory is information-theoretic in na-
ture. Most problems could be phrased and perhaps solved without
sheaf theory, but the notation would be enormously more com-
plicated and difficult to comprehend.

R.O. Wells, Differential analysis on complex manifolds.

After a few applications of sheaf theory in the resolution of analytic prob-
lems, one quickly becomes convinced of the truth of Wells’ words, and filled
with little desire to solve the same problems without the use of sheaves. Since
their introduction by Leray in the 1940’s and their following development by
Cartan, Oka, Serre and Grothendieck, sheaves have become a standard tool
of analysis. This thesis will make much use of sheaf theory, but unfortunately
it cannot serve as an introduction to the subject. Such an introduction, which
applies sheaf theory to problems in complex analysis, may be found in [GR65].

We thus assume the reader is familiar with the concept of a sheaf over
a topological space, but in this chapter we nevertheless collect some of the
definitions and properties of sheaves and their cohomology which we will
need later on. As coherent sheaves might be unfamiliar to some readers we
also give a short introduction to them and develop some of their properties.

Our sheaves will always be sheaves of rings or sheaves of modules. Many
of the results stated in this chapter apply to sheaves of more general algebraic
structures as well. The interested reader can find further details in [God58].

1.1 Sheaves and cohomology
(1.1.1) Construction. Let F be a sheaf on X. We denote by F [0] the

sheaf of all sections of F , even those which are not continuous. In other
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1.1. SHEAVES AND COHOMOLOGY

words, the set F [0](U) is the set of all maps f : U → F such that f(x) ∈ Fx
for all x ∈ U . We see that F [0] is flabby, i.e. that any section on a set U can
be extended to all of X, and that there is a canonical injection j : F ↪→ F [0].

We define inductively a sequence of sheaves

0→ F d0
→ F [0] d1

→ F [1] → ...

where F [q] := (Coker dq−1)[0], and dq := jCoker dq−1 ◦ πq. Here

πq : F [q−1] → Coker dq−1

is the standard projection and

jCoker dq−1 : Coker dq−1 ↪→ (Coker dq−1)[0]

is the canonical injection introduced above. We sometimes refer to the mor-
phisms dq as differentials.This sequence is exact by construction, and is called
the simplical flabby resolution of F . It first appeared in [God58].

Definition 1.1.2. We define the q-th cohomology group ofX with values
in F as

Hq(X,F) := Ker (dq : F [q] → F [q+1])
Im (d[q−1] : F [q−1] → F [q])

with the convention that Hq(X,F) = 0 whenever q < 0. The morphisms dq
induce morphisms of the cohomology groups, which we denote again by dq
in an abuse of notation.

We can also define the cohomology groups Hq(X,F) via any exact se-
quence 0→ F → F0 → F1 → ... where the sheaves F q are flabby. The fact
that the resulting cohomology groups are well defined, i.e. do not depend on
the sequence in question, implies that this definition is equivalent to the one
given above. This is done in detail in Godement’s book which we cited above.

A quick induction argument now yields:

Proposition 1.1.3. If F and G are sheaves over X and ϕ : F → G is
a morphism of sheaves, then ϕ induces morphisms ϕq such that the diagram

Hq(X,F) dq→ Hq+1(X,F)
ϕq ↓ ϕq+1 ↓

Hq(X,G) δq→ Hq+1(X,G)

is commutative for every q ≥ 0.
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1.1. SHEAVES AND COHOMOLOGY

Proposition 1.1.4. To any exact sequence of sheaves 0 → F → S →
G → 0 we can associate an exact sequence of cohomology groups

0→ F(X)→ S(X)→ G(X)→ H1(X,F)→ H1(X,S)→ . . .

Sketch of proof: One quickly verifies that the induced morphisms

ϕq : Hq(X,F)→ Hq(X,S) and ψq : Hq(X,S)→ Hq(X,G)

satisfy Kerψq = Imϕq and that ϕ0 is injective. The only problem is con-
structing the connecting morphism δq : Hq(X,G) → Hq+1(X,F), which is
done with an application of the snake lemma from homological algebra, and
one verifies that the resulting sequence is exact. �

Combining propositions 1.1.3 and 1.1.4 we get:
Proposition 1.1.5. Suppose we have a commutative diagram of sheaves

on X
0 → A → B → C → 0

↓ ↓ ↓
0 → F → S → G → 0

where the horizontal arrows are exact sequences. Then we have a commutative
diagram of cohomology groups

. . . → Hk(X,A) → Hk(X,B) → Hk(X, C) → . . .
↓ ↓ ↓

. . . → Hk(X,F) → Hk(X,S) → Hk(X,G) → . . .

for all k ≥ 0.

Remark — We trust that readers are familiar with the Čech cohomology
of a sheaf F . While it is not always the case that we can identify Čech
cohomology with the usual one, we do have the following theorem for acyclic
coverings:

Theorem 1.1.6. (Leray) Let F be a sheaf on X and let U = (Uα) be a
covering of X. Set Uα0,...,αt := Uα0 ∩ . . . ∩ Uαt for all t ≥ 0. If

Hs(Uα0,...,αt ,F) = 0

for all s ≥ 1 and all indices α0, . . . , αt, then

Ȟk(U ,F) ' Hk(X,F)

for all k, where Ȟk(U ,F) is the k-th Čech cohomology group of F with respect
to the covering U .
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1.2. COHERENT SHEAVES

We will need the following proposition in chapters 3 and 4 for certain ar-
guments which proceed by descending induction on the order of a cohomology
group. A proof of the proposition can for example be found in [Dem07].

Proposition 1.1.7. Let F be a sheaf on a paracompact space X. Then
Hk(X,F) = 0 for k > topdimX.

Lemma 1.1.8. Let X be a topological space and (Uα)α∈I an open cov-
ering of X, and let Fα be a sheaf of rings (resp. modules) over Uα for any
α ∈ I. Let θαβ : Fβ(Uα ∩ Uβ) → Fα(Uα ∩ Uβ) be isomorphisms such that
θαβ ◦ θβγ = θαγ on Uα ∩Uβ ∩Uγ. Then there exists a sheaf F over X and for
each α an isomorphism ηα : F|Uα → Fα such that θαβ = ηα ◦ η−1

β on Uα ∩Uβ.

In slightly less obscure language, the lemma tells us that in order to define
a sheaf on a topological space we only need to define it on an open covering of
the space. We will need this lemma in chapter 2 when we construct a complex
space out of an algebraic variety. The proof may be found in [Ser55].

1.2 Coherent sheaves
One of the more useful concepts in differential geometry is the one of a vector
bundle over a manifold. However, vector bundles have a flaw; given two vector
bundles and a morphism between them, then the kernel, image or cokernel
of that morphism is in general not a vector bundle, which is a problem if we
want to construct exact sequences of vector bundles. To solve this problem
we must find a more general concept which is stable under the taking of
kernels, images and cokernels.

We note that if E is a vector bundle of rank r with transition morphisms
in a sheaf O, then we can associate to E the sheaf of its sections O(E), which
is a sheaf of O-modules. It is in turn locally isomorphic to Or, or to put it
another way, there is an exact sequence of sheaves

Or → O(E)→ 0

This suggests one way to generalize the concept of a vector bundle; we let
the rank r vary between points. This leads us to the following concept:

Definition 1.2.1. Let F be a sheaf of O-modules on X. Then F is
locally finitely generated if for every point x ∈ X there exists a neighborhood
U of x and sections f1, . . . , fp ∈ F(U) such that for every y ∈ U the stalk Fy
is generated by the germs f1,y, . . . , fp,y as a O-module.

5



1.2. COHERENT SHEAVES

We see that this condition is equivalent to the existence of an exact se-
quence

Op|U → F|U → 0

in a neighborhood of every point, where F|U is the restriction of F to U ,
that is the union of all stalks Fx where x ∈ U . The point here is that the
natural number p can vary depending on the point x. Unfortunately this is
not enough to guarantee stability under the taking of kernels, images and
cokernels of morphism, but this is almost enough. The final step needed is
the concept of a coherent sheaf. First we define:

Definition 1.2.2. Let F be a sheaf of O-modules on X and let U ⊂ X
be open. Let f1, . . . , fp be sections of F(U), then the kernel of the homomor-
phism

O⊕p|U → F|U , (g1,x, . . . , gp,x) 7→
∑

1≤j≤p
gj,xfj,x

is a subsheaf R(f1, . . . , fp) of O⊕pU , called the sheaf of relations between
f1, . . . , fp.

Definition 1.2.3. A sheaf F ofO-modules onX is coherent if it satisfies
the following conditions:

a) F is locally finitely generated,
b) for any open U ⊂ X and any f1, . . . , fp ∈ F(U) the sheaf of relations
R(f1, . . . , fp) is locally finitely generated.

Note that the second condition says that the kernel of any morphism
ϕ : O⊕p → F is locally finitely generated. Also note that coherence is a local
property.

The following theorem is the key to many good properties of coherent
sheaves. A proof may be found in [Ser55].

Theorem 1.2.4. Let 0 → F → S → G → 0 be an exact sequence of
sheaves of O-modules. If two of the sheaves are coherent, then the third one
is coherent as well.

Proposition 1.2.5. Any locally finitely generated subsheaf G of a co-
herent sheaf F is coherent.

Proof: We only need to show that for any sections g1, . . . , gp of G the
sheaf of relations R(g1, . . . , gp) is locally finitely generated. But this is true
as the sections gj are also sections of F , which is coherent. �

6



1.2. COHERENT SHEAVES

The next few statements are quick corollaries of these two properties,
mostly obtained by setting up appropriate short exact sequences, so we leave
their proofs to the reader:

Corollary 1.2.6. Let ϕ : F → G be a morphism of coherent sheaves.
Then Kerϕ, Imϕ and Cokerϕ are coherent.

Corollary 1.2.7. If F and G are coherent subsheaves of a coherent sheaf
S, then both F ∩ G and S/G are coherent.

Definition 1.2.8. A sheaf of rings O is said to be coherent if it is co-
herent as a module over itself.

Corollary 1.2.9. If O is a coherent sheaf of rings, then O⊕p is coherent
for all p ≥ 1. Also, if F is a coherent O-module and f1, . . . , fp ∈ F(U), then
the sheaf of relations R(f1, . . . , fp) is coherent.

Theorem 1.2.10. Let F be a sheaf of O-modules, where O is a coherent
ring of sheaves. Then F is coherent if and only if for every integer m ≥ 0
and every x ∈ X there is a neighborhood U of x on which there is an exact
sequence of sheaves

O⊕pm|U → O⊕pm−1
|U → . . .→ O⊕p1

|U → O⊕p0
|U → F|U → 0

Proof: Suppose that such a sequence exists in a neighborhood of every
point and let x be a point of X. Then there certainly exists a neighborhood
U of X and an exact sequence

O⊕p1
|U → O⊕p0

|U → F|U → 0.

But as O⊕p is coherent for any p ≥ 1, then F is locally isomorphic to the
cokernel of a morphism of coherent sheaves, so F is coherent.

Now suppose that F is coherent. Then for any x we can find a neighbor-
hood U0 and a surjective morphism ϕ0 : O⊕p0

|U0
→ F|U0 . Using the coherence

of Kerϕ0, we can find a neighborhood U1 ⊂ U0 of x and a morphism ϕ1 such
that the sequence

O⊕p1
|U1

ϕ1→ O⊕p0
|U1

ϕ0→ F|U1 → 0

is exact. We repeat this construction as many times as needed, and arrive at
a neighborhood U of x on which there is an exact sequence as described in
the statement of the theorem. �
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1.2. COHERENT SHEAVES

Note that the above theorem says in particular that a sheaf over a coherent
sheaf of rings is coherent if and only if it is locally the cokernel of a morphism
ϕ : O⊕q → O⊕p. We will use this fact often.

Corollary 1.2.11. Let F and G be coherent sheaves of O-modules. Then
F ⊗O G is coherent.

Proof: Note that in a neighborhood of every x in X we have an exact
sequence

O⊕q → O⊕p → F → 0,

and thus an exact sequence

O⊕q ⊗O G → O⊕p ⊗O G → F ⊗O G → 0.

Now, O⊕p ⊗O G = G⊕p which is coherent, so F ⊗O G is locally the cokernel
of a morphism of coherent sheaves. �

Proposition 1.2.12. Let F and G be sheaves of O-modules. If F is
coherent, then we have an isomorphism

HomO(F ,G)x ' HomOx(Fx,Gx)

Proof: There is a canonical morphism HomO(F ,G)x → HomOx(Fx,Gx):
Let ϕ be an element of HomO(F ,G)x. On every small neighborhood U of
x, the germ ϕ is given by a morphism ϕU : F(U) → G(U), and with this
collection of morphisms we can define a morphism ϕx ∈ HomOx(Fx,Gx).

Now take ϕ : F → G such that ϕx = 0. We want to show that ϕ = 0
on a neighborhood of x, or in other words, that the canonical morphism
defined above is injective. As F is locally finitely generated, there exists a
neighborhood U of x such that F is generated by sections f1, . . . , fp on U .
As ϕx(fj,x) = 0 for all j, then ϕ(fj) = 0 for all j on a neighborhood V ⊂ U
of x, but then ϕ = 0 on V .

Finally, let ϕx ∈ HomOx(Fx,Gx) be given. We want to find a morphism
ψ : F → G such that ψx = ϕx. Now, let f1, . . . , fp be sections of F that
generate F near x, and let Fj = (F 1

j , . . . , F
p
j ), 1 ≤ j ≤ q be sections of

O⊕p which generate R(f1, . . . , fp) near x. These sections exist because F is
coherent. Also, let gj be sections of G near x such that gi,x = ϕx(fi,x) for
1 ≤ i ≤ p. We can write any section of F near x as f = ∑

aifi where ai ∈ O,
and we define our candidate for a map by ψ(f) := ∑

aigi. Obviously we have
that ψx = ϕx, if our map ψ is well defined.
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1.2. COHERENT SHEAVES

We thus need to show that if two different sums ∑ aifi and
∑
a′ifi define

the same germ fx, then they map to the same element of G, or, that if
a = (a1, . . . , ap) is a section of R(f1, . . . , fp) near x, then ∑

aifi maps to
zero. As

0 = ϕx

( p∑
i=1

F i
j,xfi,x

)
=

p∑
i=1

F i
j,xϕx(gi,x) =

p∑
i=1

F i
j,xgi,x

and the right hand side is a germ of G at x, we conclude that ψ sends
the generators of R(f1, . . . , fp) to zero on a neighborhood of x. Therefore,
ψ annihilates any linear combination of the generators, and thus all of the
sheaf of relations. �

Corollary 1.2.13. If F and G are coherent sheaves of O-modules, then
Hom(F ,G) is coherent.

Proof: In a neighborhood of each x we have an exact sequence O⊕q →
O⊕p → F → 0. By using the above proposition we obtain an exact sequence

0→ Hom(F ,G)→ Hom(O⊕q,G)→ Hom(O⊕p,G). (1.1)

Now, for any p we have Hom(O⊕p,G) ' G⊕p, which is a coherent sheaf.
The sheaf Hom(F ,G) is then equal to the kernel of a morphism of coherent
sheaves. �

The following property of locally finitely generated sheaves is often useful:

Proposition 1.2.14. Let F be a locally finitely generated sheaf. If f1, . . . , fp
are sections of F that generate Fx at a point x, then they generate Fy for all
y in a neighborhood of x.

Proof: There is a neighborhood W of x and sections g1, . . . , gq of F(W )
which generate Fy for y ∈ W . Since f1,x, . . . , fp,x generate Fx we can find
sections hij in a neighborhood of x such that

gj,x =
p∑
i=1

hij,xfi,x,

for 1 ≤ j ≤ q. Therefore there exists a neighborhood U of x such that
gj|U = ∑

hijfi, and since gj|U generate F on U then fi also generate F on
U . �

Corollary 1.2.15. If F is a locally finitely generated sheaf, then its
support SuppF := {x ∈ X| Fx 6= 0} is closed in X.
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1.3. EXTENDING AND RESTRICTING A COHERENT SHEAF

Proof: The zero section of F generates the zero stalk, so the complement
of the support is open. �

This corollary along with the properties above of morphisms of coherent
sheaves allow us to deduce the following result for coherent sheaves, which
does not hold for arbitrary sheaves.

Corollary 1.2.16. Let F ϕ→ S ψ→ G be a sequence of coherent sheaves
which is exact at a point x. Then there exists a neighborhood U of x such
that the sequence

F(U) ϕU→ S(U) ψU→ G(U)

is exact.

Proof: The sheaf F/Kerψ ◦ ϕ is coherent and zero at x, so it is zero
in an open neighborhood V of x, i.e. ImϕV ⊂ KerψV . Similarly, the sheaf
KerϕV / ImϕV is coherent and zero at x. Thus it is zero on a neighborhood
U ⊂ V of x, on which we then have KerψU = ImϕU . �

1.3 Extending and restricting a coherent sheaf
In chapter 4 we will be given a coherent sheaf F of O/I-modules over a
closed subspace Y ⊂ X, where O is a coherent sheaf of rings and I is a
coherent sheaf of ideals of O. We will extend this sheaf to the whole space
X and consider it as a sheaf of O-modules. To this end we need to know to
what extent these operations preserve coherence and cohomology.

A proof of the following proposition may be found in [God58] or [Dem07].

Proposition 1.3.1. Let Y be a closed subspace of X. If F is a sheaf
on Y , we denote by FX its extension by 0 to the whole of X. We have an
isomorphism of cohomology groups

Hk(Y,F) ' Hk(X,FX), k ≥ 0.

Proposition 1.3.2. Let Y be a closed subspace of X. If F is a sheaf
of O-modules on Y , then FX is a sheaf of OX-modules. The sheaf F is a
coherent sheaf of O-modules if and only if FX is a coherent sheaf of OX-
modules.

10



1.3. EXTENDING AND RESTRICTING A COHERENT SHEAF

Proof: The sheaf FX is clearly a sheaf of OX-modules. Let U ⊂ X be
open and set V = Y ∩U . If ϕ : O⊕p|V → F|V is a homomorphism, then we can
define a homomorphism ϕX : (OX)⊕p|U → FX|U by setting ϕX = 0 outside of
V . We also note that any homomorphism ϕX : (OX)⊕p|U → FX|U will be zero
outside of V , because the sheaves in question are zero there, and thus we get
a well defined morphism ϕ : O⊕p|V → F|V . It is now clear that ϕ is surjective if
and only if ϕX is surjective, which gives us that F is locally finitely generated
if and only if FX is locally finitely generated.

It rests to show that R(f1, . . . , fq), where fj ∈ F(V ), is locally finitely
generated if and only ifR(fX1 , . . . , fXq ), where fXj ∈ FX(U), is locally finitely
generated. The argument is essentially the same as the one above, so we leave
it to the reader. �

Proposition 1.3.3. Let O be a coherent sheaf of rings over X and let I
be a coherent sheaf of ideals of O. A sheaf F of O/I-modules is O/I-coherent
if and only if it is O-coherent.

Proof: The map O → O/I is surjective, so F is locally finitely generated
as a O-sheaf if and only if it is locally finitely generated as a O/I-sheaf.

Now let f1, . . . , fp be sections of F as a O/I-module over an open U ⊂ X,
and let π : O⊕p → (O/I)⊕p be the projection. Then

R(f1, . . . , fp) = π(R̃(f1, . . . , fp))

where the sheaf of relations R̃ is the subsheaf of O⊕p obtained by consider-
ing f1, . . . , fp as sections of F as a O-module. If F is O-coherent, then the
O-sheaf R̃(f1, . . . , fp) is locally finitely generated, so the sheaf of relations
R(f1, . . . , fp) is locally finitely generated, and F is O/I-coherent.

Suppose that F is O/I-coherent. Then it is locally the cokernel of a
map ϕ : (O/I)⊕q → (O/I)⊕p. But O/I is O-coherent, so Cokerϕ ' F is
O-coherent as well. �

Remark — Let O be a sheaf of rings and I an ideal sheaf of O. Let
F be a sheaf of O/I-modules, and denote by F0 the sheaf we obtain by
considering F as a sheaf of O-modules. Now note that F and FO have the
same structure as Z-modules. When we calculate the cohomology groups of
a sheaf of modules we only use its Z-module structure, so in fact we have
that Hk(X,F) = Hk(X,FO) for all k ≥ 0.

Definition 1.3.4. Let X and Y be topological spaces and f : X → Y
be a continuous map. Let OX be a sheaf of rings over X, let OY be a sheaf

11



1.3. EXTENDING AND RESTRICTING A COHERENT SHEAF

of rings over Y , and suppose that OX has the structure of a f−1OY -module.
For a sheaf F of OY modules over Y we define

f ∗F := f−1F ⊗f−1OY OX

and note that f ∗F is a sheaf of OX-modules over X.

Recall that there is a canonical morphism F → f−1F , so we obtain a
canonical morphism F → f ∗F by tensoring with the identity of OX .

The next couple of propositions will develop some properties of this mod-
ified inverse image operation. Unless we state otherwise, our notation will be
the same as in definition 1.3.4.

Proposition 1.3.5. Let ϕ : F → G be a morphism of sheaves. Then ϕ
induces a morphism f ∗ϕ : f ∗F → f ∗G.

Proof: We know ϕ induces a morphism ϕ̃ : f−1F → f−1G. Set f ∗ϕ :=
ϕ̃⊗f−1OY idOX . �

From the definition of the morphism f ∗ϕ we see that:

Corollary 1.3.6. Let ϕ : F → G and ψ : G → H be morphisms of
sheaves. Then f ∗(ψ ◦ ϕ) = f ∗ψ ◦ f ∗ϕ.

Note that the association F 7→ f−1F preserves stalks and therefore exact
sequences. Also note that the tensor product is right exact, i.e. if F → S →
G→ 0 is exact, then F ⊗A → S ⊗A → G⊗A → 0 is exact for any sheaf of
modules A. It follows that the operation F 7→ f ∗F is right exact, and since
f ∗(OpY ) = OpX we get:

Proposition 1.3.7. If F is OY -coherent, then f ∗F is OX-coherent.

Remark — We will use this operation in particular when X is a closed
subspace of Y and f is the injection ι : X ↪→ Y . If F is a sheaf over Y , then
ι∗F will be the restriction of F to X but with the structure of a sheaf of
OX-modules.
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Chapter 2

Complex spaces and algebraic
varieties.

GAGA is a theorem about coherent sheaves on algebraic and complex spaces,
so we need to have some idea about what those things are. In vague but sug-
gestive terms an algebraic variety is a topological space locally homeomorphic
to the zero set of a finite number of polynomials, the homeomorphisms being
given by so called regular maps, which are a slight generalization of rational
functions. The idea of a complex space is a similar one, but there our space
locally looks like the zero set of a finite number of holomorphic functions,
and the homeomorphisms are holomorphic functions.

In this chapter we will make these notions more precise, but our treat-
ment will be very incomplete and will only touch upon those definitions and
properties needed to state and prove GAGA. For a more detailed discussion
on algebraic varieties we refer to [Ser55] or [Per08], and to [Dem07] or [GR65]
for background on complex spaces.

2.1 Complex spaces
Definition 2.1.1. A closed subset A of an analytic manifold M is an

analytic set if for every x in A there exists a neighborhood U of x and
holomorphic functions f1, . . . , fN on U such that

A ∩ U = {z ∈ U | f1(z) = . . . = fN(z) = 0}

Any closed submanifold ofM is an analytic set, but an analytic set is not
necessarily a submanifold of M because we do not require the differentials

13



2.1. COMPLEX SPACES

df1, . . . , dfN to be linearly independent. We nevertheless have a notion of a
holomorphic function on an analytic set A:

Definition 2.1.2. For any x ∈ M we let IA,x be the ideal of germs
f ∈ OM,x such that f vanishes on A. We define IA as the disjoint union of
all IA,x. Then IA is a subsheaf of OM , called the ideal sheaf of A. The sheaf
of holomorphic functions on A is

OA := (OM/IA)|A

The following two important theorems are due to Oka and Cartan, re-
spectively, and combined with the results of chapter 1 they give us a great
deal of information about the sheaves of holomorphic functions:

Theorem 2.1.3. (Oka) The sheaf of rings OM is coherent for any ana-
lytic manifold M .

Theorem 2.1.4. (Cartan) The ideal sheaf IA of any analytic set A ⊂M
is coherent.

It of course follows from Oka and Cartan’s theorems that the sheaf OA
is coherent.

Loosely speaking, we obtain a complex space by gluing several analytic
sets together. Gluing sets is done via morphisms, so to make this notion
precise we need a suitable notion of a morphism of analytic sets:

Definition 2.1.5. Let A ⊂ M and B ⊂ N be analytic subsets of ana-
lytic manifoldsM and N . A morphism from A to B is a map F : A→ B such
that for every x in A there exists a neighborhood U of x and a holomorphic
map F̃ : U → N such that F̃ |U∩A = F |U∩A. At every point x ∈ A the map
F induces a ring morphism

F ∗x : OB,F (x) → OA,x, g 7→ g ◦ Fx

called the comorphism of F .

Definition 2.1.6. Let X be a locally compact Hausdorff space, count-
able at infinity (note: also known as σ-compactness), with a sheaf of contin-
uous functions OX . Then X is said to be a complex space if there exists an
open covering (Uλ) of X along with homeomorphisms Fλ : Uλ → Aλ onto
analytic subsets Aλ ⊂ Cnλ , such that the comorphisms F ∗λ : OAλ → OX|Uλ
are sheaf isomorphisms. The sheaf OX is called the structure sheaf of X.

14



2.2. ALGEBRAIC VARIETIES

Note that both analytic manifolds and analytic sets are complex spaces,
and that the structure sheaf of a complex space is coherent. Now, a complex
space X is locally isomorphic to an analytic set, so we have well defined
notions of holomorphic functions on X, analytic subsets of X, morphisms of
complex spaces, and so forth.

Remark — In geometric terms, what we have defined here is a local ringed
space which is locally isomorphic to ringed spaces of the type (A,OA) where A
is an analytic set. Although introducing the notion of a ringed space would let
us give a more compact definition of a complex space and save us some time
later in defining algebraic varieties, we will use the more explicit definition
above in the next chapter and would have to give it anyway.

We finish this section with a very important definition:

Definition 2.1.7. Let X be a complex space with structure sheaf OX .
An analytic sheaf is a sheaf of OX-modules.

2.2 Algebraic varieties
Put very briefly, we are now going to repeat the last section, but with poly-
nomials and rational maps in the place of holomorphic maps and to define
algebraic varieties.

There are some differences between the algebraic and analytic cases though,
as for example it will be natural to consider a different underlying topology
on an algebraic set in place of the usual one on an analytic set. For motiva-
tion, we recall the small spoiler that rational functions will play a role in our
construction, and consider that any rational function on an open set U in Cr

will extend to a larger open set W unless there exists a non-zero polynomial
which has no zeros in U but has zeros in W . In a sense we want to work
with open sets which are an analog of domains of holomorphy for rational
functions. This leads us to define the following topology on Cr:

Definition 2.2.1. A set A ⊂ Cr is said to be an Zariski-closed (or Z-
closed) if there exist polynomials p1, . . . , pN on Cr such that

A = {z ∈ Cr| p1(z) = . . . = pN(z) = 0}

A Zariski-open (or Z-open) set will be the complement of a Z-closed set. The
topology defined by these open sets is called the Zariski-topology on Cr.
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2.2. ALGEBRAIC VARIETIES

Proving that the collection of Zariski-open sets does indeed form a topol-
ogy is not hard and is done by considering ideals in the polynomial ring
C[X1, . . . , Xr], as they correspond to closed sets. Note also that the Zariski-
topology is coarser than the usual topology on Cr, i.e. every Zariski-open set
is open in the usual sense.

Definition 2.2.2. Let U be a Zariski-open set. A function R on U is
regular if it is continuous and there exist polynomials P and Q such that Q
is non-zero on U and R = P/Q.

If we give C and Cr the Zariski-topology, then the regular functions on
Cr are continuous and form a sheaf OCr over Cr.

As an analog of the analytic sets of the last section we define:

Definition 2.2.3. A subset Y of Cr is said to be locally closed if Y =
U ∩ F , where U is Z-open and F is Z-closed set. A function R : Y → C is
called regular if there exists a Z-open neighborhood V of Y and a regular
function R̃ on V such that R̃|Y = R. The sheaf of regular functions on Y is
denoted by OY .

If Y = U ∩ F is locally closed, then we can form a sheaf of ideals
IF ⊂ C[X1, . . . , Xr], called the ideal sheaf of Y . The sections of IF are the
polynomials which are zero on F . Similarly to the analytic case we have that
OY = (OCr/IF )|Y .

The following proposition is proved in [Ser55], it follows from the proofs
of Oka and Cartan’s theorems:

Proposition 2.2.4. The sheaves OCr , IF and OY are coherent.

In another analog with the last section we define maps between locally
closed sets:

Definition 2.2.5. Let U ⊂ Cr and V ⊂ Cs be locally closed. A map
ϕ : U → V is called a regular map is ϕ is continuous and for any x ∈ U there
is a neighborhood W ⊂ Cr of x and a function ϕ̃ = (ϕ̃1, . . . , ϕ̃s) : W → Cs

such that each of the ϕ̃j is a regular function and ϕ̃U∩W = ϕU∩W .

We can now define the algebraic version of a complex space. As before
we obtain an algebraic variety by gluing together several locally closed sets,
but there are slightly different conditions on the resulting topological space
than before.
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2.2. ALGEBRAIC VARIETIES

Definition 2.2.6. An algebraic variety is a topological space X with a
sheaf of rings OX such that the diagonal in X×X is closed, and there exists
a finite covering U1, . . . , UN of X and homeomorphisms Fj : Uj → Vj, where
Vj is a locally closed set in Crj , such that the comorphism F ∗j : OVj → OX|Uj
is a sheaf isomorphism. The sheaf OX is called the structure sheaf of X.

Remark — Please note that the condition that the diagonal is closed ∆
in X×X does not imply that X is Hausdorff, because the Zariski topology on
X ×X is in general not the product topology. That ∆ be closed is imposed
here to exclude certain pathological examples from the class of algebraic
varieties.

Definition 2.2.7. Let X be an algebraic space with a structure sheaf
OX . An algebraic sheaf over X is a sheaf of OX-modules.

We will be concerned with a particular type of algebraic varieties called
projective varieties. As the name implies they have something to do with the
projective space Pn, which is defined as the quotient of Cn+1\{0} by the action
of the multiplicative group C∗. There is thus a projection π : Cn+1\{0} → Pn
and we give Pn the quotient topology where Cn+1 \ {0} has the Zariski-
topology. One can show that this topology is the same one as the one defined
by setting a closed set equal to the zero set of a finite number of homogeneous
polynomials on Pn.

We define a sheaf OPn over Pn, which we call the sheaf of regular functions
on Pn, by setting

OPn(U) := {f ∈ OCn+1(π−1(U))| f(λx) = f(x) for all λ ∈ C∗}

for every open set U ⊂ P n, and we take the obvious restriction maps. A
regular function on a subset of Pn may be thought of as a rational function
P/Q where Q is non zero on U and P and Q are homogeneous polynomials
of the same degree.

The topological space Pn with the sheaf OPn is the prototype of a pro-
jective variety, the terminology being justified by the following proposition
proved in [Ser55]:

Proposition 2.2.8. The space Pn with the sheaf OPn is an algebraic
variety.

The objects we will work with in GAGA are projective varieties, which
are defined as closed subvarieties of Pn.
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2.3. ANALYTIFICATION

2.3 Analytification
In the previous section we defined the Zariski-topology on Cn. We can com-
pare this topology with the usual one:

Lemma 2.3.1.
a) The Zariski topology on Cn is coarser than the usual one.
b) Every locally Z-closed subset is analytic.
c) If U and U ′ are locally Z-closed and f : U → U ′ is a regular map, then

f is an analytic map.
d) If the map f in c) is a regular isomorphism, then it is an analytic

isomorphism.

Proof: Statement a) is obvious because any Z-closed set is closed in the
usual topology and b) is true because polynomials are holomorphic. The
component functions of a regular map are rational functions, which are holo-
morphic, so c) is immediate, and d) follows if we apply c) to the inverse
f−1. �

Given an algebraic variety X, we are now going to use this lemma to
define the structure of an analytic space on X. In order to not confuse the
two topologies we will obtain on X, we will refer to an open set in the original
topology as a Z-open set, and refer to an open set in the new topology simply
as an open set.

Proposition 2.3.2. Let X be an algebraic variety. There exists a unique
analytic structure on X such that every Zariski-open set U ⊂ X will be open,
and such that any regular morphism ϕ : U → V from U ⊂ X to a locally
Z-closed V ⊂ Cn will be analytic.

Proof: Let Uj be an open covering of X such that there are homeomor-
phisms ϕj : Uj → Vj, where Vj is a locally closed set in Crj . We give Vj the
structure of an analytic set via the lemma, that is the usual topology and a
sheaf OVj of holomorphic functions, and transfer that structure to Uj with
the map ϕ−1

j . More precisely, we define a basis for a topology on X by the
sets ϕ−1

j (W ) where W ⊂ Vj is open in the usual topology on Vj, we define
a sheaf OanX locally with the inverse images ϕ−1

j OVj , and glue together via
lemma 1.1.8.

Denote the space X with this new structure by Xan. We note that Xan is
indeed a topological space with a sheaf of rings which is locally isomorphic
to an analytic set and its sheaf of holomorphic functions. As the analytic sets
Vj are locally compact and Hausdorff, then so is Xan, and because the Vj are
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2.3. ANALYTIFICATION

countable at infinity and Xan is covered by a finite number of sets isomorphic
to Vj, then Xan is countable at infinity. Thus Xan is a complex space.

If U is Z-open in X and ϕ : U → V is a morphism onto a locally Z-
closed V in Cn, then U is the union of the open U ∩ Uj and therefore open
in Xan. The map ϕ is regular, so by construction it will belong to OanX and
be analytic.

Any analytic structure defined on X via other homeomorphisms ψj :
U ′k → V ′k will now be homeomorphic to the one defined here via comparison
on the intersections Uj ∩ U ′k. �

Remark — If X is an algebraic variety then we have a continuous map
ι : Xan → X, which set-theoretically is just the identity map. Since regular
functions are holomorphic in the usual topology, ι−1Oalg is a subring of Oan,
which then has the structure of a ι−1Oalg-module.

Remark — Now, given an algebraic sheaf F on an algebraic variety X,
we can apply the modified inverse image operation from definition 1.3.4 to F
and obtain an analytic sheaf ι∗F onXan. We will modify our notation slightly
and write Fan instead of ι∗F . We call Fan the analytic sheaf associated to
F , or the analytification of F .

Remark — Let us recall some properties of this operation from section
1.3: We have a natural morphism α : F → Fan for any algebraic sheaf F ,
and in particular a natural morphism Oalg → (Oalg)an = Oan. If ϕ : F → G
is a morphism of algebraic sheaves, then ϕ gives rise to a canonical morphism
ϕan : Fan → Gan of analytic sheaves. Also, if ψ : G → H is another morphism
of algebraic sheaves, then (ψ◦ϕ)an = ψan◦ϕan. And finally, if F is a coherent
algebraic sheaf, then Fan is a coherent analytic sheaf.

A few properties of the analytification operation are obtained as con-
sequences of the fact that Oalg and Oan form a faithful flat pair of rings.
For our purposes this means that for any point x and any exact sequence
E → F → G of Oalg,x-modules the sequence

E ⊗Oalg,x Oan,x → F ⊗Oalg,x Oan,x → G⊗Oalg,x Oan,x

is exact, and that if E is a non-zero Oalg,x-module then E ⊗Oalg,x Oan,x is
non-zero. The first property says that Oalg and Oan form a flat pair of rings,
and the second says that the flat pair is faithful. That Oalg and Oan form
a faithful flat pair of rings is proved by showing that they are noetherian
rings with the same completions. We will not go into detail on how these
algebraic properties are proved and used in the demonstration of the next
three propositions, and instead refer the reader to [Ser56].
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Proposition 2.3.3. The canonical map Oalg → Oan is injective.

Because of the his proposition we will from now on identify Oalg with its
image in Oan. From the flatness property we get:

Corollary 2.3.4. Let F → S → G be an exact sequence of algebraic
sheaves. Then Fan → San → Gan is exact.

The sheaves of homomorphisms of algebraic and analytic sheaves satisfy
a particularly nice property under analytification:

Proposition 2.3.5. If F and G are coherent algebraic sheaves, then
there is a canonical isomorphism

HomOalg(F ,G)an = HomOan(Fan,Gan)

Finally we have a proposition which tells us that it doesn’t matter in
which order we extend or analytify a sheaf on a closed subvariety. It will
be used, along with the results of section 1.3 to reduce GAGA to an easier
special case.

Proposition 2.3.6. Let Y ⊂ X be a closed subvariety of an algebraic
variety X, and let F be an algebraic sheaf on Y . If FX is the trivial extension
of F to all of X, then

(Fan)Xan = (FX)an

20



Chapter 3

The Cartan-Serre theorem

For the proof of GAGA we will need a result due to Cartan and Serre on the
finiteness of the dimension of the cohomology groups of a coherent analytic
sheaf on a compact analytic space. Establishing the result itself is fairly pain-
less once we’ve developed the necessary machinery, and most of the chapter
will be devoted to its development.

Let’s start by stating the theorem and outlining our plan of attack, to
give motivation for the development of much of the results in the chapter.
Our goal is to prove the following result:

Theorem. (Cartan-Serre) Let F be a coherent analytic sheaf on a com-
pact analytic space X. Then Hk(X,F) is finite dimensional for all k ≥ 0.

We intend to prove this theorem with an application of a theorem of
Schwartz from functional analysis:

Theorem. (Schwartz) Let (E•, d) and (F •, δ) be complexes of Fréchet
spaces with continuous differentials, and let ρ• : E• → F • be a continuous
complex morphism. If ρq is compact and Hq(ρ•) : Hq(E•) → Hq(F •) is
surjective, then Hq(F •) is a Hausdorff finite dimensional vector space.

To apply Schwartz’s theorem we need to find suitable complexes and
a morphism between them. Natural candidates are the complex of Čech
cochains of the sheaf F , or more precisely two Čech complexes defined by
acyclic coverings U and U ′ where one covering is finer than the other, and
the restriction morphism between the complexes.

We thus have several objectives: we need to establish Schwartz’s theorem,
produce a covering of X, prove that this covering is acyclic with respect to
F , define a Fréchet space structure on the Čech complex defined by this
covering, and prove that if we take a finer covering with the same properties
then the restriction morphism between the two complexes will be compact.
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3.1. SCHWARTZ’S THEOREM

3.1 Schwartz’s theorem
We will need some results on the perturbation of linear operators.

Definition 3.1.1. Let E and F be Fréchet spaces and g : E → F be a
continuous linear operator.

a) g is compact if there exists a neighborhood U of 0 in E such that the
image g(U) is compact in F .

b) g is a (quasi-) monomorphism if g(E) is closed in F and g is injective
(resp. if Ker g is finite dimensional).

c) g is an (quasi-) epimorphism if g is surjective (resp. if g(E) is finite
codimensional).

Remark — The notions of mono- and epimorphisms are usually defined
on more general types of topological vector spaces where Banach’s theorem
doesn’t always apply. There we insist, for example, that an epimorphism be
a surjective open map. We will only make use of Fréchet spaces, and adjust
our definitions of mono- and epimorphisms accordingly.

Theorem 3.1.2. Let h : E → F be a compact linear operator.
a) If g : E → F is a quasi-monomorphism, then g + h is a quasi-

monomorphism.
b) If g : E → F is a quasi-epimorphism, then g+h is a quasi-epimorphism.
A proof of this theorem can be found in chapter 9 in [Dem07], where it

is in fact proved for more general Hausdorff locally convex topological vector
spaces. We will only use it to establish Schwartz’s theorem.

Theorem 3.1.3. (Schwartz) Let (E•, d) and (F •, δ) be complexes of Fréchet
spaces with continuous differential, and let ρ• : E• → F • be a continuous
complex morphism. If ρq is compact and Hq(ρ•) : Hq(E•)→ Hq(F •) is sur-
jective, then Hq(F •) is a Hausdorff finite dimensional vector space.

Proof: Begin by defining the operators
g, h : Zq(E•)⊕ F q−1 → Zq(F •),

g(x⊕ y) = ρq(x) + δq−1(y),
h(x⊕ y) = −ρq(x)

As Zq(E•) ⊂ Eq and Zq(F •) ⊂ F q are the kernels of continuous morphisms,
they are closed, and thus Fréchet spaces. The operator h is compact be-
cause ρq is compact. Now, let z ∈ Zq(F •) and find [e] ∈ Hq(E•) such that
Hq(ρ)([e]) = [z]. Then there exists a y in F q−1 such that ρ(e) = z + δq−1(y),
and we find that g(e ⊕ −y) = z, so g is an epimorphism. We then find
that f = g+ h = δq−1 is a quasi-epimorphism, so Bq(F •) is closed and finite
codimensional in Zq(F •). Thus Hq(F •) is Hausdorff and finite dimensional.�
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3.2 Pseudoconvex neighborhoods
The open covering of X we will take will be one of strongly pseudoconvex
neighborhoods, or equivalently, of Stein neighborhoods. We choose pseudo-
convex sets because they are closed under finite intersections, certain co-
homology groups disappear on them, and there are a lot of them. We could
also have gotten by with, for example, polynomial polyhedra or polynomially
convex sets, which are both simple special cases of pseudoconvex sets.

Let X be a complex manifold, x a point in X and (z1, . . . , zn) local coor-
dinates on a neighborhood of X. For any u ∈ C2(X) we define a hermitian
form on TX,x by

Hux :=
∑

1≤j,k≤n

∂2u

∂zj∂z̄k
(x) dzj ⊗ dz̄k,

and we call Hux the complex Hessian of u at x.
Now let Y be another complex manifold, f : X → Y a holomorphic

mapping and v ∈ C2(Y ). If x is a point in X we calculate that for ξ ∈ TX,x

H(v ◦ f)x(ξ) =
∑
l,m,j,k

∂2(v ◦ f)
∂zl∂z̄m

(x)∂fm(x)
∂zj

ξj
∂fm(x)
∂zk

ξk = Hvf(x)(f ′(x) · ξ)

so the definition ofHux does not depend on the choice of coordinates (z1, . . . , zn)
on X. We also see that if Hvf(x) is (semi-)positive, then so is H(v ◦ f)x. We
now define:

Definition 3.2.1. LetX be an analytic manifold. A function ϕ ∈ C2(X)
is (strictly) plurisubharmonic if its complex HessianHϕ is semi-positive (resp.
positive) on X.

Remark — (i) By the discussion above we see that if X and Y are com-
plex manifolds, f : X → Y is holomorphic and ϕ is (strictly) plurisubhar-
monic on Y , then ϕ ◦ f is (strictly) plurisubharmonic on X. In particular, if
X ⊂ Y then ϕ|X is plurisubharmonic on X.

(ii) Note that H(u + v)x = Hux + Hvx, so the sum of plurisubharmonic
functions is plurisubharmonic, and the sum is strictly plurisubharmonic as
soon as one of the functions being summed is strictly plurisubharmonic.

(iii) This is not the usual definition of a plurisubharmonic function, which
is usually taken to be an upper semicontinuous function with values in
[−∞,+∞[ which is subharmonic when restricted to any complex line. Our
definition is equivalent to the usual one when the function in question is
at least twice continuously differentiable. However we are only going to use
plurisubharmonic functions to define pseudoconvex sets, and our restriction
poses no problems for that purpose.
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Definition 3.2.2. Let X be a complex space, let x be a point of X, and
let ϕ be a function defined on X. We say that ϕ is (strongly) plurisubhar-
monic at x if there exists a neighborhood U of x, a biholomorphic f : U → A
onto an analytic set A ⊂ Ω ⊂ CN and a (strongly) plurisubharmonic function
ψ on Ω such that ϕ ◦ f = ψ|A. The function ϕ is (strongly) plurisubharmonic
on X if it is (strongly) plurisubharmonic at every point of X.

We can show that the definition of a plurisubharmonic function is inde-
pendent of the embedding of U in CN .

Definition 3.2.3. A function ψ : X → [−∞,∞[ on a topological space
X is called an exhaustion function if for any c ∈ R the sublevel set

Xc := {x ∈ X|ψ(x) < c}

is relatively compact in X.

Definition 3.2.4. Let X be a complex space. Then X is said to be
strongly pseudoconvex if there exists a strongly plurisubharmonic exhaustion
function on X.

Example 3.2.5. (i) The function ϕ(z) := − log(r2−|z−x|2) is strictly
plurisubharmonic on any open ball B = B(x, r) = {z ∈ Cn||z − x| < r}. It
is clearly an exhaustion function on B, so B is strongly pseudoconvex.

(ii) Now set ψ(z) = − log(1 + |z|2). Then ψ is a strictly plurisubharmonic
exhaustion function on Cn, so Cn is strongly pseudoconvex.

Proposition 3.2.6. Let X be a strongly pseudoconvex complex space.
a) If A is a closed analytic subset of X, then A is strongly pseudoconvex.
b) If U1, . . . , UN are strongly pseudoconvex subspaces of X such that U :=

U1 ∩ . . . ∩ UN is a subspace of X, then U is strongly pseudoconvex.

Proof: Let ϕ be a strongly plurisubharmonic exhaustion function on X.
a) As A is closed, then ϕ|A is an exhaustion function on A.
b) Note thatXN is strongly pseudoconvex because ψ(x1, . . . , xn) = ϕ(x1)+

. . . + ϕ(xn) is an exhaustion function on XN . In the same way the product∏
Uj is strongly pseudoconvex. If ∆ is the diagonal of XN , then ∆ is closed,

so U = ∆ ∩ ∏Uj is a closed submanifold of ∏Uj and therefore strongly
pseudoconvex. �

Proposition 3.2.7. If X is a complex space, then every point x of X has
a fundamental family of strongly pseudoconvex neighborhoods, i.e. for every
open neighborhood W of x there exists a strongly pseudoconvex neighborhood
U of x such that U ⊂ W .
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Proof: We reduce to the case where X is an analytic set A ⊂ Ω ⊂ CN .
For any neighborhood W of x there exists a ball B(x, r) ⊂ Ω such that
U := B(x, r) ∩ A ⊂ W . But B(x, r) is strongly pseudoconvex and A is
closed, so U is strongly pseudoconvex. �

The reason why we introduce strongly pseudoconvex neighborhoods lies
in the following theorem:

Theorem 3.2.8. Let X be a strongly pseudoconvex analytic manifold
and let E be a holomorphic vector bundle on X. Then Hp,q

∂̄
(X,E) = 0 for

any p ≥ 0 and any q > 0.

Remark — (i) A nice proof of this theorem is by way of L2 estimates
on the sections of E. We will not give the proof here, as just giving the
necessary definitions and preparatory results to begin the proof would be
material enough for a separate chapter, and instead refer the interested reader
to [Dem07].

(ii) Siu has given a proof of the stronger Cartan B theorem for strongly
pseudoconvex sets which uses only (relatively) elementary results. Details
may be found in [Siu68].

(iii) It is worth mentioning that for our purposes we only need to have a
fundamental collection of sets U around every point of a complex space which
are closed under finite intersections and have the property that H0,q

∂̄
(U,C) =

0 for every q > 0. As we said earlier, an alternative collection of such sets
is formed by a generalization of polydisks, or polynomial polyhedra. They
are trivially closed under intersections, and annihilating their cohomology
groups consists of pulling oneself up by ones bootstraps from the easy case
of polydisks. The motivated reader can find the relevant details in [GR65],
from which one can extend the same result to polynomially convex sets.

3.3 A topology on F
LetX be a complex space and let F be a coherent analytic sheaf onX. By the
previous section there exists a fundamental family of strongly pseudoconvex
sets around every point of X.

Remark — Our goal in the first part of this section is to prove theorem
3.3.3, which says that there exists a fundamental family of neighborhoods
around any point x such that all the higher cohomology groups of a coher-
ent analytic sheaf vanish on those neighborhoods. As our neighborhoods are
strongly pseudoconvex, this is a consequence of the Cartan B theorem. The
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point of this development is thus to see that we can get by without Cartan’s
theorem, any readers familiar with it can safely jump to the construction of
the topology on F in the end of the section.

Proposition 3.3.1. If M is a strongly pseudoconvex complex manifold
then

Hk(M,Op) = 0

for all p ≥ 1, k ≥ 1.

Proof: By the Dolbeault isomorphism theorem and theorem 3.2.8 we
have

Hk(M,Op) = (Hk(M,O))p = (H0,k
∂̄

(M,C))p = 0, k ≥ 1. �

Now, for x ∈ X there exists an open neighborhood V ⊂ X of x and a
homeomorphism F : V → A ⊂ Ω ⊂ CN , where A is an analytic set and
F ∗ : O|A → OX|V is a sheaf isomorphism. Let i : A ↪→ Ω be the inclusion.
Then i∗F is a coherent OΩ-module supported on A. By theorem 1.2.10 there
exists an exact sequence

Op2N → Op2N−1 → . . .→ Op1 → Op0 → i∗F → 0 (3.1)

on a neighborhood U ⊂ Ω. In this case we shall say that A ⊂ Ω is a F-
distinguished analytic set. After replacing Ω by U and A by A ∩ U , we may
assume that the exact sequence (3.1) exists on all of Ω. We have proven:

Proposition 3.3.2. Let F be a coherent analytic sheaf on a complex
space X. Then every x in X is contained in some F-distinguished analytic
set A.

Theorem 3.3.3. Let A ⊂ Ω be a F-distinguished analytic set. If U ⊂ Ω
is strongly pseudoconvex and V = A ∩ U , then Hk(V,F) = 0 for all k ≥ 1.

Proof: We denote by Z l the kernel of the map Opl → Opl−1 for l ≥ 1
and by Z0 the kernel of Op0 → i∗F . There are exact sequences

0→ Z0 → Op0 → i∗F → 0
0→ Z l → Opl → Z l−1 → 0

for 1 ≤ l ≤ 2N . By proposition 3.3.1 we have that Hk(U,Op) = 0 for all
k ≥ 1, so we get a string of isomorphisms

Hk(V,F) ' Hk(U, i∗F) ' Hk+1(U,Z0) ' . . . ' Hk+2N+1(U,Z2N),

and the last group vanishes because topdimV ≤ dimR V = 2N . �
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(3.3.4) Construction. Let A ⊂ Ω be a F -distinguished analytic set,
let U ⊂ Ω be strongly pseudoconvex, and set V = A ∩ U . By the proof of
the above theorem we have H1(U,Z0) = 0, so we have an exact sequence

0→ Z0(V )→ Op(V )→ F(U)→ 0,

and we have a Fréchet space structure on Op(V ). We will now show that
Z0(V ) is closed in Op(V ), so Z0(V ) is a Fréchet space, and we can give
F(U) the Fréchet structure of the quotient space:

Let fm ∈ Z0(V ) be a sequence converging uniformly on compacts in V to
a limit f in Op(V ). Then the germs (fm)x converge to fx with respect to the
Krull topology defined on Op(V ) (see lemma A.2.1). But by theorem A.2.2
we know that Z0

x is closed in Opx with respect to this topology, so fx ∈ Z0
x

for all x and thus f ∈ Z0(V ), i.e. Z0(V ) is closed in Op(V ).

Proposition 3.3.5. The topology on F(U) is independent of the choices
made above.

A proof of this proposition may be found in chapter 9 of [Dem07].

3.4 The Cartan-Serre theorem
For each x in X we let A ⊂ Ω be a F -distinguished patch that contains
x, and V ⊂ Ω a strongly pseudoconvex neighborhood of x. We then have
a covering of X by neighborhoods U = V ∩ A which are restrictions of
strongly pseudoconvex sets to X, and we can extract a countable covering
U = (Uα)α∈I of such sets. Note that finite intersections

Uα0,...,αq :=
q⋂
j=0

Uαj

are again restrictions of strongly pseudoconvex sets to X which are contained
in F -distinguished analytic sets. By the results in the last section, U is an
acyclic covering ofX and Leray’s theorem tells us that Ȟk(U ,F) ' Hk(X,F)
for all k ≥ 0.

We now consider the product topology on the spaces of Čech cochains

Cq(U ,F) :=
⊕

(α0,...,αq)∈Iq+1

F(Uα0,...,αq).

As the restriction maps ρUV : Op(V ) → Op(U) are continuous, so are the
restriction maps on F , and thus the restriction maps on Cq(U ,F) are continu-
ous as well. It follows that the Čech-differentials δq : Cq(U ,F)→ Cq+1(U ,F)
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are continuous. We give the cohomology groups Ȟk(U ,F) the topological
structure of the quotient space, and we see that the maps induced by the
restriction maps and the Čech-differentials are continuous.

Lemma 3.4.1. Let U and U ′ be the restrictions of strongly pseudoconvex
neighborhoods contained in a F-distinguished analytic set and suppose that
U ′ is relatively compact in U . Then the restriction operator ρU ′U : F(U) →
F(U ′) is compact.

Proof: Let U = A ∩ V and U ′ = A ∩ V ′ where V and V ′ are strongly
pseudoconvex sets and V ′ is relatively compact in V . The restriction operator
Op(V )→ Op(V ′) is compact by Montel’s theorem, so ρU ′U : F(U)→ F(U ′)
is also compact. �

Theorem 3.4.2. (Cartan-Serre) Let F be a coherent analytic sheaf on a
compact complex space X. Then Hk(X,F) is finite dimensional for all k ≥ 0.

Proof: By the preceding discussion we can find a suitable covering U
of X and give the corresponding Čech complex and cohomology groups a
topological structure. Because X is compact we can take the U to be finite,
and we can find another covering of strongly pseudoconvex sets U ′ = (U ′α)
such that U ′α ⊂⊂ Uα for all α.

From the above lemma we conclude that the restriction morphism ρ• :
C•(U ,F)→ C•(U ′,F) is compact. It induces a morphismHq(ρ•) : Ȟq(U ,F)→
Ȟq(U ′,F), which is surjective because both cohomology groups are isomor-
phic to Hk(X,F) via isomorphisms which fit into a commutative diagram
with the restriction morphism. The result now follows from Schwartz’s the-
orem. �
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Chapter 4

GAGA

It is worth taking a moment to consider the information we have gathered
so far. In chapter 2 we saw that given a coherent algebraic sheaf F on an
algebraic variety X, we can fabricate an analytic sheaf Fan on the complex
space Xan. We also have a natural sheaf morphism α : F → Fan, which
induces a morphism α• of the complex of sheaf cohomology groups. Several
questions now present themselves, such as:

Does every analytic sheaf on Xan arise in this way? If so, then does it
arise from a unique algebraic sheaf? What do we know about the morphisms
αk? Are they injective or surjective or isomorphisms?

As it turns out it is too optimistic to hope that the answers to these
questions are positive in general:

Example 4.0.3. There exist analytic sheaves which do not rise as ana-
lytifications of algebraic sheaves: Consider the ideal sheaf IA of the analytic
set

A = {z ∈ C | sin z = 0}

If there was an algebraic sheaf F over C such that Fan = IA we would find
that A = supp IA = suppF , so A would be the support of a locally finitely
generated sheaf and thus closed in the Zariski topology. But A is a countably
infinite set, and thus not the zero set of any finite number of polynomials.

Example 4.0.4. Even when an analytic sheaf is the analytification of
an algebraic sheaf, the algebraic sheaf is not necessarily unique. We don’t
have space to give their construction, but Shavarevich defines in [Sha94] two
algebraic varieties X and Y which are not isomorphic, but whose analytifica-
tions are isomorphic. By definition the coherent analytic sheaf OXan ' OY an
rises fromOX andOY , but these cannot be isomorphic as then the underlying
algebraic varieties would be isomorphic as well.

29



4.1. THE SHEAVES O(D)

Example 4.0.5. The induced maps are not always isomorphisms: There
are entire holomorphic functions on C which are not polynomials, or put
another way, while α0 : H0(C,Oalg) → H0(C,Oan) is injective it is not
surjective.

It is a stunning result that while we cannot answer these questions above
in the general case, they have very definite and positive answers when X is
a projective variety:

Theorem. (GAGA) Let X be a projective variety. For any coherent an-
alytic sheaf F over Xan there exists a unique coherent algebraic sheaf Falg
over X such that (Falg)an = F . Furthermore, for any k ≥ 0 there is a natural
isomorphism of cohomology groups

Hk(X,Falg) = Hk(Xan,F).

As the above examples show, several of GAGA’s statements become false
when the projectivity condition on X is relaxed. Fans of counterexamples can
find several more in [Har77], but we do not have the necessary terminology
to state most of them here. In short, none of GAGA’s statements is correct
for a general algebraic variety.

Before we can begin the proof we need to remind ourselves of a few
facts on the sheaves of the tautological line bundles on Pn, and we must
establish versions of Cartan’s theorems A and B for coherent analytic sheaves
on compact complex spaces. These results will be instrumental to the proof
of GAGA.

4.1 The sheaves O(d)
Our treatment of the sheaves O(d) is rather informal. Proofs of nontrivial
statements in this section may be found in [Dem07], [AG74], [Ser55] and
[Ser56].

Definition 4.1.1. The tautological line bundle on Pn is the subbundle
of the trivial vector bundle Pn × Cn+1 defined by

O(−1)[z] = C · z ⊂ Cn+1

If Uj = {[z] ∈ Pn | zj 6= 0} is the usual open covering of Pn, then the
transition functions of O(−1) on Uj ∩ Uk are given by gjk([z]) = zk/zj. The
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sets Uj are open in both the Zariski and usual topologies and the transition
functions gjk are both regular and holomorphic, so O(−1) is both defined as
an algebraic and holomorphic line bundle. In the case of ambiguity we write
Oalg(−1) or Oan(−1) to specify which structure O(−1) has.

Definition 4.1.2. For any d ∈ Z we define O(1) = O(−1)∗, O(−d) =
O(−1)⊗d and O(d) = O(1)⊗d for d > 0, and we set O(0) equal to the trivial
line bundle C.

Note that all O(d) can be considered as either algebraic or holomorphic
line bundles. It is clear from the definition that the line bundles O(d) satisfy

O(d+ e) = O(d)⊗O(e)

for all d, e ∈ Z.
As per usual, we make no distinction between a line bundle and its sheaf

of sections. In an abuse of notation we denote the sheaf of sections of O(d)
again by O(d); when we want to precise whether this is the sheaf of regular
or holomorphic sections we write Oalg(d) or Oan(d) as before. We note that
O(0) is the structure sheaf OPn and that (Oalg(d))an = Oan(d) for any d ∈ Z.

The sheaf O(d) is the sheaf of sections of a line bundle and is thus invert-
ible, i.e. locally isomorphic to O. It follows that O(d) is coherent and flat,
as tensoring an exact sequence of sheaves of O-modules is locally the same
as tensoring it by O, which changes nothing. Note also that as the sheaves
O(d) are invertible, then they are locally isomorphic to each other.

Let π : Cn+1 \ {0} → Pn be the usual projection, as either a regular or
holomorphic function. It is useful to know that for any open U ⊂ Pn we have

O(d)(U) = {f ∈ O(π−1(U)) | f(λz) = λdf(z) for all λ ∈ C∗}

We can prove this equality by noting that the sets on the right side of the
equation define an invertible sheaf over Pn which has the same transition
functions as O(d).

The canonical sheaf morphism Oalg(d)→ Oan(d) induces a morphism of
the sheaf cohomology groups. The first part of the following proposition is
proved in Serre’s GAGA paper by chasing cohomology sequences, but it is
also proved in [AG74] by direct calculations which give the second part as
well:

Proposition 4.1.3. For any k ≥ 0 and d ∈ Z there is a canonical
isomorphism Hk(Pn,Oalg(d)) ' Hk(Pn,Oan(d)). For d ≥ −n, both groups
are zero.
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We finish this section by establishing a certain short exact sequence for
any coherent sheaf F over Pn, which will be quite important for the proof of
GAGA.

Remark — Let t be a non-zero linear form on Cn+1, i.e. a function of
the form t(z) = a0z0 + . . . + anzn, where aj ∈ C and not all aj are zero. As
t(λz) = λt(z) for any λ ∈ C the set A = {[z] ∈ Pn | t([z]) = 0} is well defined
and analytic, and we can form its ideal sheaf IA. It follows from the definition
of O(−1) that the morphism O(−1) → IA defined by multiplication by t is
a sheaf isomorphism. In particular, IA is invertible, and we have an exact
sequence

0→ IA → O → OA → 0 (4.1)
Now let F be a coherent sheaf over Pn. If FA is the restriction of F to A,
then it follows from the definition of analytic inverse image of a sheaf (i.e. the
modified inverse image operation from definition 1.3.4 in the case of analytic
sheaves) that FA = F ⊗ OA. Tensoring through (4.1) by F we get a short
exact sequence

0→ IA · F → F → FA → 0

where IA · F is the image of IA ⊗ F in F . Recall that IA is invertible, so
locally we have IA⊗F = F . It follows that IA⊗F → F is actually injective,
so we have a short exact sequence

0→ F ⊗O(−1)→ F → F ⊗OA → 0

Now set F(d) := F ⊗O(d) for any d ∈ Z. The sheaves F(d) are coherent, we
have that FA(d) = F(d)⊗OA, and as the sheaves O(d) are flat the sequence

0→ F(d− 1)→ F(d)→ FA(d)→ 0 (4.2)

is exact. This last short exact sequence will be used in the proof of theorem
A in the next section.

4.2 Theorems A and B
Let F be a coherent analytic sheaf over Pn. For any d ∈ Z we set F(d) :=
F ⊗O(d). As both F and O(d) are coherent, the sheaf F(d) is coherent. The
key to the proof of GAGA is the following two theorems:

Theorem A. Let F be a coherent analytic sheaf over Pn. There exists
a d0 ∈ Z such that for every d ≥ d0 the sheaf F(d) is generated by its global
sections, i.e. for every x ∈ Pn there exist sections f1, . . . , fp ∈ H0(Pn,F(d))
which generate F(d)x as a O-module.
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Theorem B. Let F be a coherent analytic sheaf over Pn. There exists
a d0 ∈ Z such that Hk(Pn,F(d)) = 0 for every k ≥ 1 and every d ≥ d0.

These theorems are versions of Cartan’s theorems A and B, which give
the same results for a coherent sheaf F on a strongly pseudoconvex manifold,
but without any reference to the sheaves F(d).

The proofs of these theorems will proceed in several steps. We will show
that theorem B follows from theorem A, establish a lemma for use in the
proof of theorem A, and finally prove theorem A. Let us begin by proving a
proposition that will be used in the proofs of theorem B and GAGA:

Proposition 4.2.1. Assume theorem A holds and let F be a coherent
analytic sheaf over Pn. Then there exists an exact sequence

O(e)q → O(d)p → F → 0

for some d, e ∈ Z and p, q ≥ 0.

Proof: According to theorem A there is an exact sequenceOp → F(−d)→
0, and if we tensor through the sequence with O(d) we obtain the exact se-
quence O(d)p → F → 0. If we do the same to the kernel of the map in this
sequence, we get O(e)q → O(d)p → F → 0 as we wanted. �

We can now show that theorem B is a consequence of theorem A:

Proof of theorem B: By proposition 4.2.1 there exists an exact sequence

O(d′)q → O(d)p ϕ→ F → 0

from which we get the short exact sequence

0→ Kerϕ→ O(d)p → F → 0 (4.3)

and thus
0→ Kerϕ(e)→ O(d+ e)p → F(e)→ 0 (4.4)

exact for any e ∈ Z. The proof will now proceed by descending induction on
the order of the cohomology group Hk(Pn,F(e)). We can start the induction
because Hk(Pn,F(e)) = 0 for k > dimR Pn = 2n.

Let k be given and suppose the result holds for k+1. By proposition 4.1.3
we know that Hk(Pn,O(d+ e)) = 0 for any d+ e ≥ −n, so by the induction
step we can find a d0 such that

Hk(Pn,O(d+ e)) = Hk+1(Pn,Kerϕ(e)) = 0
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for any e ≥ d0. From the exact sequence (4.4) we get an exact sequence

Hk(Pn,O(d+ e)p)→ Hk(Pn,F(e))→ Hk+1(Pn,Kerϕ(e))

for any e, and thus Hk(Pn,F(e)) = 0 for any e ≥ d0. �

For the proof of theorem A we need the following lemma, which in fact
does most of the job for us:

Lemma 4.2.2. Let F be a coherent analytic sheaf over Pn. For each x
in Pn there exists a d0 such that F(d0)x is generated by its global sections.

Proof: We proceed by induction on the dimension of Pn. For n = 0 the
space Pn is a point and any locally finitely generated sheaf over Pn is thus
trivially generated by its global sections.

Let n > 0 be given and suppose the lemma holds on every Pk for k < n.
Let A ' Pn−1 be a hyperplane of Pn that passes through x. By remark 13
there is for any d ∈ Z a short exact sequence

0→ F(d− 1)→ F(d)→ FA(d)→ 0

which in turn gives rise to a long exact sequence

0→ H0(Pn,F(d− 1))→ H0(Pn,F(d)) → H0(Pn−1,FA(d))→
→ H1(Pn,F(d− 1))→ H1(Pn,F(d)) → H1(Pn−1,FA(d))→ . . .

By the induction hypothesis theorem A is true for sheaves over Pn−1, so
theorem B is also true for sheaves over Pn−1. This lets us conclude that there
exists a d1 such that H1(Pn−1,FA(d)) = 0, i.e. that H1(Pn,F(d − 1)) →
H1(Pn,F(d)) is surjective, for all d ≥ d1.

We now have a long sequence with surjective maps

H1(Pn,F(d1 − 1))→ H1(Pn,F(d1))→ . . . H1(Pn,F(d))→ . . .

Let us recall the Cartan-Serre theorem of chapter 3, which says that these
vector spaces are all finite dimensional. As each map in the sequence is sur-
jective, we conclude that the sequence of integers (dimH1(Pn,F(d)))d≥d1−1
is decreasing. The sequence is also bounded below by 0, so there exists a
d2 such that it is stationary for all d ≥ d2, which means that the maps
H1(Pn,F(d))→ H1(Pn,F(d+ 1)) are isomorphisms for all d ≥ d2.

Our long exact sequence above then reduces to a short exact sequence

0→ H0(Pn,F(d− 1))→ H0(Pn,F(d))→ H0(Pn−1,FA(d))→ 0
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for every d ≥ d2. By the induction hypothesis there exists a d0 ≥ d2 such that
FA(d0)x is generated by H0(Pn−1,FA(d0)) over OA. We claim that F(d0)x is
then also generated by its global sections:

To simplify the notation, we put A = OPn,x, E = F(d0)x, p = IA,x and
let F be the sub-A-module of E generated by H0(Pn,F(d0)). Our goal is to
show that E = F . We have

FA(d0)x = F(d0)x ⊗A OA,x = E ⊗A A/p = E/pE,

where the first equality is by remark 13, the second is valid because OA,x =
OPn,x/IA,x and the third follows from general properties of tensor products.
Furthermore, by the surjection of H0(Pn,F(d0)) → H0(Pn−1,FA(d0)) we
know that the image of F in E/pE generates E/pE. This means that E =
F + pE, from which we get E = F + mE, where m is the unique maximal
ideal of E. By corollary A.1.2 to Nakayama’s lemma, we get that E = F , i.e.
the global sections of F(d0) generate F(d0)x. �

Finally we prove theorem A:

Proof of theorem A: For every x in Pn there is a dx such thatH0(Pn,F(dx))
generates F(dx)x. The sheaf F(dx) is locally finitely generated, so there are
global sections fx,1, . . . , fx,N which generate the stalk F(dx)y in a neighbor-
hood Vx of x.

Take a neighborhood Wx = {[z] ∈ Pn | zj 6= 0} of x. Then the sheaf
O(1)y is generated its global sections on Wx, we can even take the global
sections to be the ones corresponding to the coordinate functions z0, . . . , zn
on Cn+1 \ {0}. Then both F(dx)y and O(1)y are generated by their global
sections on Ux := Vx ∩Wx.

Now note that if G and H are generated by their global sections on U ,
then G ⊗H is also generated by its global sections on U ; if (gj)j∈J generate
G and (hk)k∈K generate H on U , then (gj ⊗ hk)j∈J,k∈K generate G ⊗H on U .
Thus F(d)y is generated on Ux by its global sections for any d ≥ dx.

Finally, cover Pn by open Ux such that the global sections of F(d) generate
its stalks on Ux for any d ≥ dx, and take a finite subcovering Ux1 , . . . , Uxm of
Pn. Then the global sections of F(d) generate its stalks on all of Pn for all
d ≥ d0 := max{dx1 , . . . , dxm}. �

4.3 The proof of GAGA
Theorem 4.3.1. (GAGA) Let X be a projective variety. For any coher-

ent analytic sheaf F over X there exists a unique coherent algebraic sheaf
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Falg over X such that (Falg)an = F . Furthermore, for any k ≥ 0 there is a
natural isomorphism of cohomology groups

Hk(X,Falg) = Hk(X,F).

Remark — It is enough to prove GAGA for the case X = Pn. For the
result on the cohomology groups, this follows from proposition 1.3.1 and
remark 2. The statement on uniqueness will follow from the other two, and
for existence we reason as follows:

Extend the sheaf F by zero to all of Pn and denote the extension by FPn ,
the extension will be a coherent analytic sheaf ofOPn-modules by propositions
1.3.2 and 1.3.3. Suppose there exists a coherent algebraic sheaf G on Pn such
that Gan = FPn . If i : X ↪→ Pn is the injection, then G|X := i∗G will be a
coherent algebraic sheaf over X such that (G|X)Pn = G. By proposition 2.3.6
we have that

(Gan|X )Pn = (GPn|X )an = Gan = FPn

and thus Gan|X = F by restriction to X.

Proof of GAGA: The proof will proceed by three steps. First we con-
struct the sheaf Falg, then we show the isomorphism of cohomology groups,
and finally we prove uniqueness.

Step 1: Existence.

By proposition 4.2.1 there exists an exact sequence

Oan(e)q ϕ→ Oan(d)p → F → 0
↑ ↑

Oalg(e)q Oalg(d)p

where the vertical arrows are the canonical morphisms. Note that F =
Cokerϕ. We would like to define a morphism Oalg(e)q → Oalg(d)p which
makes this diagram commutative, as then we could define Falg as the cok-
ernel of that morphism. We will show that the morphism ϕ is in fact the
analytification of an algebraic ϕalg : Oalg(e)q → Oan(d)p, which will certainly
make our diagram commutative.

The morphism ϕ is an element of H0(Pn,HomOan(Oan(e)q,Oan(d)p)). We
calculate that

HomOan(Oan(e)q,Oan(d)p) = Oan(−e)q ⊗Oan(d)p =
pq⊕
i=1
Oan(d− e)
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so ϕ is in fact an element of
pq⊕
i=1

H0(Pn,Oan(d− e)).

But by proposition 4.1.3 we have H0(Pn,Oan(d − e)) = H0(Pn,Oalg(d −
e)), and the calculations above made again in reverse for Oalg we find that
there is a unique element ϕalg of H0(Pn,HomOalg(Oalg(e)q,Oalg(d)p)) such
that ϕalg 7→ ϕ via the canonical morphism.

We thus have a coherent algebraic sheaf Falg := Cokerϕalg which fits into
the exact sequence

Oalg(e)q
ϕalg→ Oan(d)p → Falg → 0

Analytifying we find that

Oan(e)q ϕ→ Oan(d)p → (Falg)an → 0

is exact, so (Falg)an = Cokerϕ = F .

Step 2: Cohomology.

We will prove that the natural maps Hk(Pn,Falg) → Hk(Pn,F) induced by
the canonical map Falg → F are isomorphisms by descending induction on
k. Note that we can start the induction as

Hk(Pn,Falg) = Hk(Pn,F) = 0

for k > dimR Pn = 2n1.
From the construction of Falg we have a diagram

0 → Halg → Oalg(d)p → Falg → 0
↓ ↓ ↓

0 → H → Oan(d)p → F → 0
where Halg := Imϕalg, H := Imϕ and the horizontal arrows are exact and
everything commutes. This gives rise to a commutative diagram with long

1As my advisor pointed out to me during my defense, this has nothing to do with the
topological dimension of the space in the algebraic case. Indeed, the Zariski-topological
dimension of Pn is infinite as the intersection of any finite number of open sets is non-
empty. In the algebraic case (and the analytic as well, if we so wish) we obtain the result
by calculating the comohology groups using alternating Čech cochains, see [Dem07].
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exact horizontal sequences (we don’t write Pn to fit everything in one line)

Hk(Halg) → Hk(Oalg(d)p)→ Hk(Falg) → Hk+1(Halg)→ Hk+1(Oalg(d)p)
(1) ↓ (2) ↓ (3) ↓ (4) ↓ (5) ↓
Hk(H) → Hk(Oan(d)p)→ Hk(F) → Hk+1(H)→ Hk+1(Oan(d)p)

By the induction hypothesis arrows (4) and (5) are isomorphisms, and we
already know that (2) is an isomorphism, so (3) is surjective by the five-
lemma.

Now, set Galg := Kerϕalg, G := Kerϕ and look at the exact commutative
diagram

0 → Galg → Oalg(e)q → Halg → 0
↓ ↓ ↓

0 → G → Oan(e)q → H → 0
This gives another long exact commutative diagram

Hk(Galg) → Hk(Oalg(e)q)→ Hk(Halg) → Hk+1(Galg)→ Hk+1(Oalg(e)q)
(1′) ↓ (2′) ↓ (3′) ↓ (4′) ↓ (5′) ↓
Hk(G) → Hk(Oan(e)q)→ Hk(H) → Hk+1(G)→ Hk+1(Oan(e)q)

where the arrows (4’) and (5’) are isomorphisms by the induction hypothesis,
and we again know that (2’) is an isomorphism. By another application of
the five-lemma we find that (3’) = (1) is surjective.

But then arrows (2) and (4) are injective and arrow (1) is surjective, so
(3) is injective by the five-lemma, and is therefore an isomorphism, which is
what we wanted to prove.

Step 3: Uniqueness.

Suppose that Galg is another coherent algebraic sheaf such that there exists
an isomorphism ϕ : (Falg)an → (Galg)an. The morphism ϕ is a global section
of the coherent analytic sheaf

HomOan((Falg)an, (Galg)an) ' (HomOalg(Falg,Galg))an , (4.5)

where the sheaves are isomorphic by corollary 2.3.5, so by step 2 there exists
an algebraic morphism ϕalg : Falg → Galg such that (ϕalg)an = ϕ. By the
same reasoning there exists an algebraic morphism ψalg : Galg → Falg such
that (ψalg)an = ϕ−1. Then we find that

(ϕalg ◦ ψalg)an = (ϕalg)an ◦ (ψalg)an = id(Falg)an
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and we conclude that ϕalg ◦ ψalg = idFalg because of the isomorphism (4.5).
In the same way we see that ψalg ◦ ϕalg = idGalg , so ψalg = ϕ−1

alg and
ϕalg : Falg → Galg

is an isomorphism. The proof of GAGA is complete. �

4.4 On applying GAGA
We now have a very strong theorem in our hands, and it is natural to ask
ourselves when we can apply it. In effect, we want many examples of coherent
sheaves, and conditions on complex spaces which guarantee that they arise
as analytifications of projective varieties.

First off, we have several examples of coherent sheaves: The structure
sheaf of either a complex space or analytic variety is coherent. All vector
bundles, or rather their sheaves of sections, are coherent. The ideal sheaves
of subspaces and subvarieties are coherent. And due to the results of chapter
1 the class of coherent sheaves is closed under the application of a great deal
of algebraic operations.

Now, we know that if X and Y are algebraic varieties or complex spaces,
f : X → Y is a morphism and G is a coherent sheaf over Y , then the analytic
or algebraic inverse image f ∗G is a coherent sheaf over X. It is not always
the case that if F is a coherent sheaf over X, then the direct image f∗F is
coherent over Y . A necessary condition for the direct image to be coherent
was given by Grothendieck in the algebraic case and by Grauert and Remmert
in the analytic situation: If f is proper then f∗F is coherent. See [GR84] for
a proper statement and proof of the analytic case.

As we said it is also natural to ask what conditions a complex space has to
satisfy to be a projective variety. This is a hard question for general complex
spaces, but we have satisfactory answers in the cases of analytic sets and
complex manifolds. Chow proved the following theorem in 1949, which we
can obtain as a quick corollary of GAGA:

Theorem 4.4.1. (Chow) Let A be an analytic subset of a projective va-
riety X. Then A is algebraic.

Proof: We want to show that A is closed in the Zariski topology. Recall
that A is equal to the support of OX/IA, which is a coherent analytic sheaf
over Xan. By GAGA there exists a coherent algebraic sheaf F over X such
that Fan = OX/IA. But

SuppF = SuppOX/IA = A,
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and SuppF is Zariski-closed because F is locally finitely generated. �

Combined with an embedding theorem of Kodaira from 1954, Chow’s
result gives the following strong theorem, proven for example in [Dem07]:

Theorem 4.4.2. (Kodaira) Let X be a compact complex manifold. The
following conditions are equivalent:

a) X is a projective variety, i.e. X can be embedded as an algebraic variety
in PN for some N .

b) X carries a positive line bundle L.
c) X carries a Hodge metric, i.e. a Kähler metric ω with rational coho-

mology class {ω} ∈ H2(X,Q).

There is a useful corollary of Kodaira’s theorem. Its proof is not hard,
but it involves techniques from Hodge theory which we have not established,
so we refer again to Demailly’s book for the proof:

Corollary 4.4.3. Let (X,ω) be a compact Kähler manifold. If H2(X,O) =
0 then X is projective.
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Appendix A

Some algebraic results

A.1 Nakayama’s lemma
The following facts were used in the proof of lemma 4.2.2:

Recall that a ring R is local if it has a unique maximal ideal m. Let R be
a local noetherian commutative ring.

Lemma A.1.1. (Nakayama) Let E be a finitely generated R-module. If
mE = E, then E = 0.

Proof: By induction on the number of generators of E. Suppose E is
generated by n elements x1, . . . , xn. Then mE = E means that there exist
a1, . . . an in m such that

xn = a1x1 + . . .+ anxn

and thus (1− an)xn = a1x1 + . . .+ an−1xn−1. As 1− an is a unit in R, then
E is generated by (n− 1) elements. �

Corollary A.1.2. Let E be a finitely generated R-module and F ⊂ E a
submodule. If E = F + mE, then E = F .

Proof: Note that E/F = mE/F = m(E/F ) and apply Nakayama’s
lemma. �

Remark — Let On be the sheaf of germs of holomorphic functions of n
variables at 0. It is a consequence of the Weierstrass division theorem that
On is noetherian, and it is local with maximal ideal m = {f ∈ On | f(0) = 0}.
The proofs of these facts may be found in [Dem07] or [GR65].
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A.2 The Krull topology of On-modules
Some results used in chapter 3 may be found in this small extract of [Dem07].
We only state the results we used, and refer to the source for their proofs.

Let R be a noetherian local commutative ring with maximal ideal m.

Lemma A.2.1. (Krull) Let F be a finitely generated R-module and let
E be a submodule. Then

a) ⋂
k≥0

mkF = {0}.

b) ⋂
k≥0

(E + mkF ) = E.

Now assume that R = On = C{z1, . . . , zn}, and that m = (z1, . . . , zn).
Then On/mk is a finite dimensional C-vector space generated by the mono-
mials zα for |α| < k. It follows that E/mkE is a finite dimensional vector
space for any finitely generated On-modules E. As ∩k≥0m

kE = {0} by the
lemma, there is an injection

E ↪→
∏
k≥0

E/mkE

We give E the Hausdorff topology induced by the product, that is the weak-
est topology that makes all the projections E → E/mkE continuous. This
topology is called the Krull topology on E. For E = On this is the topology
of simple convergence on coefficients, defined by the collection of semi-norms∑
cαz

α 7→ |cα|. The theorem we used in chapter 3 was:

Theorem A.2.2. Let E ⊂ F be finitely generated On-modules. Then E
is closed in F .

42



Bibliography

[AG74] John Adams and Phillip Griffiths. Topics in algebraic and ana-
lytic geometry. Princeton University Press and University of Tokyo
Press, 1974.

[Dem07] Jean-Pierre Demailly. Complex analytic and differential geom-
etry. 2007. Online book, available at http://www-fourier.ujf-
grenoble.fr/∼demailly/manuscripts/agbook.pdf.

[God58] Roger Godement. Topologie Algébrique et Théorie des Faisceaux.
Hermann, 1958.

[GR65] Robert C. Gunning and Hugo Rossi. Analytic functions of several
complex variables. Prentice-Hall, 1965.

[GR84] Hans Grauert and Reinhold Remmert. Coherent analytic sheaves.
Springer-Verlag, Berlin, 1984.

[Har77] Robin Hartshorne. Algebraic Geometry. Springer, 1977.

[Kra82] Stephen Krantz. Function theory of several complex variables.
Wiley-Interscience, first edition, 1982.

[Lan05] Serge Lang. Algebra. Springer, third edition, 2005.

[Mun00] James R. Munkres. Topology. Prentice Hall, second edition, 2000.

[Nee07] Amnon Neeman. Algeraic and Analytic Geometry, volume 345 of
London Mathematical Society Lecture Note Series. Cambridge Uni-
versity Press, 2007.

[Per08] Daniel Perrin. Algebraic geometry. Springer-Verlag, 2008.

[Rem97] Reinhold Remmert. Classical Topics in Complex Function Theory.
Graduate Texts in Mathematics. Springer, first edition, 1997.

43



[Ser55] Jean-Pierre Serre. Faisceaux algébriques cohérents. Ann. of Math.
(2), 61:197–278, 1955.

[Ser56] Jean-Pierre Serre. Géométrie algébrique et géométrie analytique.
Ann. Inst. Fourier (Grenoble), 6:1–42, 1956.

[Sha94] Igor R. Shafarevich. Basic Algebraic Geometry, volume 2. Springer,
1994.

[Siu68] Yum-Tong Siu. A proof of cartan’s theorems a and b. Tohoku Math.
J., II. Ser., 20:207–213, 1968.

[Wat05] Bill Watterson. The Complete Calvin and Hobbes. Andrews McMeel
Publishing, 2005.

44


